Recruitment of PfSET2 by RNA Polymerase II to Variant Antigen Encoding Loci Contributes to Antigenic Variation in P. falciparum

نویسندگان

  • Uchechi E. Ukaegbu
  • Sandeep P. Kishore
  • Dacia L. Kwiatkowski
  • Chethan Pandarinath
  • Noa Dahan-Pasternak
  • Ron Dzikowski
  • Kirk W. Deitsch
چکیده

Histone modifications are important regulators of gene expression in all eukaryotes. In Plasmodium falciparum, these epigenetic marks regulate expression of genes involved in several aspects of host-parasite interactions, including antigenic variation. While the identities and genomic positions of many histone modifications have now been cataloged, how they are targeted to defined genomic regions remains poorly understood. For example, how variant antigen encoding loci (var) are targeted for deposition of unique histone marks is a mystery that continues to perplex the field. Here we describe the recruitment of an ortholog of the histone modifier SET2 to var genes through direct interactions with the C-terminal domain (CTD) of RNA polymerase II. In higher eukaryotes, SET2 is a histone methyltransferase recruited by RNA pol II during mRNA transcription; however, the ortholog in P. falciparum (PfSET2) has an atypical architecture and its role in regulating transcription is unknown. Here we show that PfSET2 binds to the unphosphorylated form of the CTD, a property inconsistent with its recruitment during mRNA synthesis. Further, we show that H3K36me3, the epigenetic mark deposited by PfSET2, is enriched at both active and silent var gene loci, providing additional evidence that its recruitment is not associated with mRNA production. Over-expression of a dominant negative form of PfSET2 designed to disrupt binding to RNA pol II induced rapid var gene expression switching, confirming both the importance of PfSET2 in var gene regulation and a role for RNA pol II in its recruitment. RNA pol II is known to transcribe non-coding RNAs from both active and silent var genes, providing a possible mechanism by which it could recruit PfSET2 to var loci. This work unifies previous reports of histone modifications, the production of ncRNAs, and the promoter activity of var introns into a mechanism that contributes to antigenic variation by malaria parasites.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Emerging Role for RNA Polymerase II in Regulating Virulence Gene Expression in Malaria Parasites

Plasmodium falciparum causes the most severe form of human malaria and is responsible for a significant public health burden in the developing world. These protozoan parasites invade circulating red blood cells (RBCs) and maintain prolonged infections through an intricate gene-expression switching mechanism that enables immune evasion through antigenic variation [1]. One of the families of gene...

متن کامل

P-121: Cloning and Expression of The Inosine Triphosphate Pyrophosphatase Gene Variant II in E.coli

Background Environmental and cellular inappropriate conditions can cause damages to cells nucleotide poll. Deamination and oxidation damages interfere with cell�s vital reactions. Inosine triphosphate pyrophosphatase (ITPA), an evolutionary conserved enzyme, plays a critical role in elimination of non-canonical bases. In human genome, the ITPA gene is located on chromosome 20 short arm and tran...

متن کامل

Genotyping of C and F Regions of Plasmodium Falciparum EBA-175 in South-East of Iran

Abstract Background and Objective: The Plasmodium falciparum EBA-175, via Sialic acid dependent glycophorin A, binds to red blood cells and thus plays a critical role in cell invasion. Some part of second allele in its gene encoding in FCR-3 (Section F) and CAMP (Section C) can be found. This study aimed to determine the prevalence of Plasmodium falciparum EBA-175KD alleles in southeastern I...

متن کامل

Cloning the P. falciparum gene encoding PfEMP1, a malarial variant antigen and adherence receptor on the surface of parasitized human erythrocytes

Plasmodium falciparum-infected human erythrocytes evade host immunity by expression of a cell-surface variant antigen and receptors for adherence to endothelial cells. These properties have been ascribed to P. falciparum erythrocyte membrane protein 1 (PfEMP1), an antigenically diverse malarial protein of 200-350 kDa on the surface of parasitized erythrocytes (PEs). We describe the cloning of t...

متن کامل

Genetic diversity and population structure of Plasmodium falciparum isolates from Dakar, Senegal, investigated from microsatellite and antigen determinant loci.

We investigated the genetic diversity and the population structure of 32 Plasmodium falciparum blood sample isolates (25 from Dakar city and suburbs and seven from other localities in Senegal) with two different types of molecular markers, 19 microsatellite and four antigenic determinant loci. Under the same technical procedure, microsatellite loci showed a mean number of alleles greater than t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2014